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Abstract

In this paper, the nonlinear bending response of finite length cylindrical shells with stiffening rings is investigated by

using a modified Brazier approach. The basic assumptions for the present study are that the deformation of a shell

subjected to pure bending can be simplified into a two-stage process. One is that the shell ovalizes but its axis remains

straight; the other is that the bending of the shell is regarded as a beam with nonuniform ovalization. The nonlinear

bending response is derived by applying the minimum potential energy principle and the corresponding critical moment,

associated with local buckling, is determined by employing the Seide–Weingarten approximation. Numerical results are

shown and compared with those obtained from other methods, which demonstrates that the assumptions used in the

present study are reasonable. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

It is well known that when a thin-walled circular cylindrical shell is subjected to bending, its cross-section
becomes progressively more oval as the curvature increases. The growth of the ovalization causes a pro-
gressive reduction in the flexural stiffness of the shell and, eventually, a maximum value of the moment is
reached. Further bending occurs with a reducing moment that characterizes a limit load instability. This
instability phenomenon was first investigated by Brazier (1927). He showed that when an initially straight
tube is bent uniformly, the longitudinal tension and compression that resist the applied bending moment
also tend to flatten or ovalize the cross-section of the tube. This in turn reduces the flexural stiffness of the
member as the curvature increases. Furthermore Brazier showed that, under steadily increasing curvature,
the bending moment being the product of curvature and flexural stiffness has a maximum value that is thus
defined as the instability critical moment.

Brazier’s simple theory was developed for cylindrical shells of infinite length. The reliability of the ap-
proach has been demonstrated by Reissner (1959) and Fabian (1977) who used robust nonlinear shell
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equations and showed that the bending response obtained from Brazier’s simple theory agrees remarkably
well with the nonlinear solution. The application of Brazier’s approach to finite length shells was first given
by Aksel’rad (1965), who employed Valasov’s semi-membrane constitutive theory to determine the effect of
the cross-sectional deformation on the buckling behaviour of shells. Similar work has been done by Ak-
sel’rad and Emmerling (1984) and Libai and Bert (1994). Tatting et al. (1995) showed that for finite length
shells local buckling almost always occurs before the limit moment is reached. By employing the semi-
membrane constitutive theory and Seide–Weingarten approximation (1961), Tatting et al. (1997) investi-
gated the local buckling behaviour of composite shells exhibiting cross-sectional deformations associated
with Brazier’s flattening effect.

In this paper, a modified Brazier approach is used to investigate the nonlinear bending response of finite
length cylindrical shells with stiffening rings. The basic assumptions used in this study are that the defor-
mation of the shell subjected to pure bending can be simplified into a two-stage process. One is that the shell
ovalizes but its axis remains straight; the other is that the bending of the shell is regarded as a beam with
nonuniform ovalization. The nonlinear bending response is derived by applying the minimum potential
energy principle and the corresponding critical moment associated with local buckling is determined by
employing the Seide–Weingarten approximation.

2. Physical model and formulations

When a long thin-walled cylindrical shell is subjected to a static pure bending moment, the tensile and
compressive longitudinal stresses on opposite sides of the neutral plane combine with the curvature of the
axis of the shell to flatten its cross-section into an oval shape. Thus the deformations of the shell can be
characterized by the longitudinal bending deformation (beam-type curvature) and the cross-section bending
deformation (ovalization). By assuming a uniform ovalization along the length of the shell, Brazier (1927)
was able to derive a simple expression for the applied moment as a function of the longitudinal bending
curvature. However, for shells of finite length, or with stiffening rings, the ovalization of the cross-section is
no longer uniform because of the local effects of the boundaries or stiffening rings. In order to extend
Brazier’s approach to a general case, the following displacements are assumed for the shell subjected to a
static pure bending moment:

uðx; hÞ ¼ u1ðxÞ cos h þ u2ðxÞ cos 2h ð1aÞ

vðx; hÞ ¼ v1ðxÞ sin h þ v2ðxÞ sin 2h ð1bÞ

wðx; hÞ ¼ w1ðxÞ cos h þ w2ðxÞ cos 2h ð1cÞ

where uðx; hÞ, vðx; hÞ and wðx; hÞ are the axial, circumferential, and radial displacements of the point ðx; hÞ
on the shell middle surface, h is the angular coordinate measured from the vertical axis as shown in Fig. 1.

Fig. 1. Shell geometry and coordinate system used.
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The displacement components u1ðxÞ, v1ðxÞ and w1ðxÞ represent the overall longitudinal bending deformation
of the shell which behaviours like a beam, whereas u2ðxÞ, v2ðxÞ and w2ðxÞ are the displacements related to
the ovalization deformation. The membrane and bending strains of the shell are obtained in terms of these
displacements and their derivatives by:

ex ¼
ou
ox

ð2aÞ

eh ¼
1

R
ov
oh

�
þ w

�
ð2bÞ

cxh ¼
1

R
ou
oh

þ ov
ox

ð2cÞ

jx ¼
o2w
ox2

ð2dÞ

jh ¼ � 1

R2

o2w

oh2

�
� ov
oh

�
ð2eÞ

jxh ¼ � 1

R
o2w
ohox

�
� ov
ox

�
ð2fÞ

where ex, eh and cxh are the membrane strains, jx, jh and jxh are the bending strains, and R is the mean
radius of the shell.

In order to simplify the problem, we first utilize Brazier’s condition for the inextensionality of the cross-
section. This implies that the circumferential membrane strain eh is zero. Substituting Eqs. (1b) and (1c) into
Eq. (2b) yields,

eh ¼
1

R
½ðv1 þ w1Þ cos h þ ð2v2 þ w2Þ cos 2h� ¼ 0 ð3Þ

Therefore, we have,

v1 ¼ �w1 and v2 ¼ �w2

2
ð4Þ

We next utilize the assumptions of Vlasov’s semi-membrane constitutive theory (Vasiliev, 1993), in
which the shell is assumed to have no rigidities in axial bending and twisting. We then have,

Mx ¼ 0 and Mxh ¼ 0 ð5Þ
where Mx and Mxh are the axial bending and twisting moments, respectively. The above semi-membrane
constitutive theory assumptions were also used by Aksel’rad and Emmerling (1984), Libai and Bert (1994)
and Tatting et al. (1997) for the problem of pure bending of finite length shells.

With these assumptions only the axial membrane and shear strains, and the circumferential bending
strain need to be considered. Substituting Eqs. (1a)–(1c) into Eqs. (2a), (2c) and (2e) and using Eq. (4), we
have,

ex ¼
du1
dx

cos h þ du2
dx

cos 2h ð6aÞ

cxh ¼ � u1
R

�
þ dw1

dx

�
sin h � 2u2

R

�
þ 1

2

dw2

dx

�
sin 2h ð6bÞ
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jh ¼
3w2

R2
cos 2h ð6cÞ

Note that the first term of the shear strain corresponding to sin h should be zero since the overall bending of
the shell as a beam does not generate shear strain in the case of pure bending. Thus, we have

u1
R

¼ � dw1

dx
ð7Þ

Substituting Eq. (7) into Eqs. (6a) and (6b) yields,

ex ¼ �R
d2w1

dx2
cos h þ du2

dx
cos 2h ð8aÞ

cxh ¼ � 2u2
R

�
þ 1

2

dw2

dx

�
sin 2h ð8bÞ

The total strain energy of the stiffened shell can be calculated by assuming the deformation of the shell as
a two-stage process. In the first stage the shell ovalizes in a way which is compatible with the assumed
ovalization deformation but its axis remains straight; and in the second stage the shell bends as a beam with
nonuniform cross-section, subjected to a constant bending moment. This assumption of a two-stage de-
formation process was first made by Brazier (1927) in his early work for infinite length shells and lately
extended by Calladine (1983) to finite length shells.

The strain energies involved in the first stage are those associated with the axial membrane and shear
strains of the shell, and the circumferential bending strains of the shell and stiffening rings, which can be
expressed by:

U1 ¼
h
2

Z L

0

Z 2p

0

Exe
2
x2

�
þ Gxhc

2
xh

�
dxRdh þ Dh

2

Z L

0

Z 2p

0

j2
h dxRdh þ

XN
n¼1

EIring
2

Z 2p

0

j2
hRdh ð9Þ

where h is the thickness of the shell, L is the length of the shell, Ex is the elastic modulus of the shell in the
axial direction, Gxh is the shear modulus of the shell, Dh is the bending rigidity of the shell in the cir-
cumferential direction, EIring is the bending rigidity of the stiffening ring, N is the total number of stiffeners,
and ex2 is the part of the axial membrane strain corresponding to cos 2h. Here the stiffening ringers have
been assumed to be evenly spaced and symmetric with respect to the shell middle surface. Substituting Eqs.
(6c), (8a) and (8b) into Eq. (9) yields,

U1 ¼
phR
2

Z L

0

Ex
du2
dx

� �2
"

þ Gxh
2u2
R

�
þ 1

2

dw2

dx

�2
#
dxþ pRDh

2

Z L

0

3w2

R2

� �2

dx

þ
XN
n¼1

pREIring
2

3w2ðxÞ
R2

				
x¼xn

 !2

ð10Þ

where xn is the position where a stiffener is placed. In the second stage the strain energy is only related to the
axial membrane strain corresponding to cos h:

U2 ¼
Exh
2

Z L

0

Z 2pR

0

e2x1 dxds �
Exh
2

Z L

0

Z 2pR

0

d2w1

dx2
z

� �2

dxds ð11Þ
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where ex1 is the part of the axial membrane strain corresponding to cos h. Note that the first integration in
Eq. (11) is based on the undeformed shell, while the second one is on the deformed shell in which the axial
strain is assumed to be linear with the distance from the neutral axis and proportional to the longitudinal
bending curvature of the axis of the shell. This energy can also be rewritten into the longitudinal bending
strain energy of the shell as a beam:

U2 ¼
1

2

Z L

0

ExIshellC2 dx ð12Þ

where ExIshell is the bending rigidity of the shell as a beam and C is the longitudinal bending curvature of the
axis of the shell. Taking into account the effects of the ovalization, Ishell has an expression:

Ishell ¼ Rh
Z 2p

0

½ðRþ w2 cos 2hÞ cos h � ðv2 sin 2hÞ sin h�2 dh � pR3h 1

�
þ 3

2

w2

R

�
ð13Þ

The longitudinal bending curvature of the axis of the shell can be obtained in terms of the displacement
v1ðxÞ or w1ðxÞ as follows:

C ¼ � o2v
ox2

				
h¼p

2

¼ � d2v1
dx2

¼ d2w1

dx2
ð14Þ

Substituting Eqs. (13) and (14) into Eq. (12) yields,

U2 ¼
pR3hEx

2

Z L

0

1

�
þ 3

2

w2

R

�
d2w1

dx2

� �2

dx ð15Þ

The potential of the applied moments is expressed by:

W ¼ 2MX ¼ M
Z L

0

d2w1

dx2

� �
dx ¼ M

dw1

dx

				
x¼L

�
� dw1

dx

				
x¼0



ð16Þ

where M is the applied moment and X is the end rotation. The total potential of the system is expressed by:

P u2;
dw1

dx
;w2

� �
¼ U1 þ U2 � W ð17Þ

from which the nonlinear bending response of the stiffened shell under pure bending can be derived.

3. Nonlinear bending responses of stiffened shells subjected to pure bending

Consider the shell with the boundary conditions of simply supported for wðx; hÞ (wðx; hÞ ¼ 0 at x ¼ 0 and
L), cross-sectional shape restraint for vðx; hÞ (vðx; hÞ ¼ 0 at x ¼ 0 and L) and rigid rotated ends for uðx; hÞ
(uðx; hÞ ¼ XR cos h at x ¼ 0 and L). If we expand the displacements in terms of a Fourier series in the axial
direction as follows:

u1ðxÞ
R

¼ � d

dx
w1ðxÞ ¼

R
L

� �
n0 1

�"
� 2x

L

�
�
X1
k¼2;4

nk

kp
sin

kpx
L

#
ð18aÞ

u2ðxÞ
R

¼
X1
m¼2;4

R
L

� �
gm sin

mpx
L

ð18bÞ
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w2ðxÞ
R

¼ �
X1
n¼1;3

fn sin
npx
L

ð18cÞ

where n0, nk, gm, fn are constants to be determined, the above boundary conditions are satisfied. Substi-
tuting Eqs. (18a)–(18c) into Eqs. (10), (15) and (16) yields,

U1

A
¼
X1
m¼2

ðmpgmÞ
2 þ l2

X1
m¼2

ð2gmÞ
2

"
þ
X1
n¼1

npfn
2

� �2
#
� 8l2

X1
m¼2

X1
n¼1

mngmfn
m2 � n2

" #
þ 4k4ð1þ bÞ



X1
n¼1

f2n � 4k4b
X1
n¼1

fnf2ðNþ1Þ�n ð19aÞ

U2

A
¼ 8n2

0 �
24

p
n2
0

X1
n¼1

fn
n
� 24

p
n0

X1
k¼2

X1
n¼1

nnkfn
n2 � k2

þ
X1
k¼2

n2
k �

3

p

X1
k¼2

X1
k0¼2

X1
n¼1

nnknk0fn
n2 � ðk þ k0Þ2

 

þ nnknk0fn
n2 � ðk � k0Þ2

!
ð19bÞ

W
A

¼ 16Kn0 ð19cÞ

in which,

A ¼ pR5hEx

4L3
¼ an energy factor ð20aÞ

b ¼ ðN þ 1ÞEIring
DhL

¼ the bending rigidity parameter of stiffeners ð20bÞ

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
L2Gxh

R2Ex

s
¼ the shear length parameter ð20cÞ

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9L4Dh

4hR6Ex

4

s
¼ the shell length parameter ð20dÞ

K ¼ ML2

2pR4hEx
¼ the applied moment parameter ð20eÞ

In the derivation of Eq. (19a) the stiffening rings have been assumed to be uniformly distributed over the
shell length, each of which has the same bending rigidity. Applying the following minimum potential energy
principle:

oP
onk

¼ 0 k ¼ 0; 2; 4; . . . ð21aÞ
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oP
ogm

¼ 0 m ¼ 2; 4; 6; . . . ð21bÞ

oP
ofn

¼ 0 n ¼ 1; 3; 5; . . . ð21cÞ

we have,

n0 �
3

p
n0

X1
n¼1

fn
n
� 3

2p

X1
k¼2

X1
n¼1

nnkfn
n2 � k2

¼ K ð22aÞ

nk �
12

p
n0

X1
n¼1

nfn
n2 � k2

� 3

p

X1
k0¼2

X1
n¼1

nnk0fn
n2 � ðk þ k0Þ2

 
þ nnk0fn
n2 � ðk � k0Þ2

!
¼ 0 k ¼ 2; 4; . . . ð22bÞ

1

"
þ mp

2l

� �2
#
gm �

X1
n¼1

mnfn
m2 � n2

¼ 0 m ¼ 2; 4; . . . ð22cÞ

np
4

� �2"
þ k2

l

� �2

ð1þ bÞ
#
fn �

k2

l

� �2

bf2ðNþ1Þ�n �
X1
m¼2

mngm

m2 � n2
� 3

pl2

n2
0

n
� 3

pl2
n0

X1
k¼2

nnk

n2 � k2

� 3

8pl2

X1
k0¼2

X1
k¼2

nnk0nk

n2 � ðk þ k0Þ2

 
þ nnk0nk

n2 � ðk � k0Þ2

!
¼ 0 n ¼ 1; 3; . . .

The examination of the order of magnitude of the variables n0, nk, gm, fn shows that variables nk, gm, fn
are one order of magnitude smaller than the variable n0. This is due to the fact that for the shell subjected to
a pure bending the dominant deformation is the bending deformation. By neglecting the nonlinear terms of
the low order variables, Eqs. (22a)–(22d) can be simplified as:

n0 �
3

p
n0

X1
n¼1

fn
n

� �
¼ K ð23aÞ

nk ¼
12

p
n0

X1
n¼1

n2

n2 � k2
fn
n

� �
k ¼ 2; 4; . . . ð23bÞ

gm

m

� �
¼ ð2lÞ2

ð2lÞ2 þ ðmpÞ2
X1
n¼1

n2

m2 � n2
fn
n

� �
m ¼ 2; 4; . . . ð23cÞ

np
4

� �2"
þ ð1þ bÞ k2

l

� �2
#

fn
n

� �
� b

k2

l

� �2
2ðN þ 1Þ � n

n

� �
f2ðN þ 1Þ � n
2ðN þ 1Þ � n

� �
 

�
X1
m¼2

m2

m2 � n2
gm

m

� �!
� 3

pl2

n0

n

� �2

� 3

pl2
n0

X1
k¼2

nk

n2 � k2
¼ 0 n ¼ 1; 3; . . . ð23dÞ

Substituting Eqs. (23b) and (23c) into Eq. (23d) and noting that n0 ¼ XðL=RÞ, Eqs. (23a) and (23d) become:

K
l

� �
¼ LX

Rl

� �
1

"
� 3

p

X1
n¼1

fn
n

� �#
ð24aÞ
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np
4

� �2"
þ ð1þ bÞ k2

l

� �2
#

fn
n

� �
� b

k2

l

� �2
2ðN þ 1Þ � n

n

� �
f2ðN þ 1Þ � n
2ðN þ 1Þ � n

� �

þ
X1
j¼1

F1ðj; n; lÞ
fj
j

� �
� 6

p

� �2 LX
Rl

� �2X1
j¼1

F2ðj; nÞ
fj
j

� �
¼ 3

p
1

n2
LX
Rl

� �2

n ¼ 1; 3; 5; . . . ð24bÞ

in which,

F1ðj; n; lÞ ¼
X1
m¼2

m2

m2 � n2
j2

j2 � m2

ð2lÞ2

ð2lÞ2 þ ðmpÞ2
ð25aÞ

F2ðj; nÞ ¼
X1
k¼2

1

n2 � k2
j2

j2 � k2
ð25bÞ

Note that the set of Eq. (24b) is linear about the variable fn if the end rotation X is regarded as a known.
Thus, for a given end rotation, we can solve Eq. (24b) to find the ovalization variable fn for various values
of n and then calculate K directly from Eq. (24a). In this way, we do not need to solve any nonlinear
equation.

For smooth shells of infinite length (k ! 1, b ¼ 0), Eq. (24b) becomes,

k4 fn
n

� �
¼ 1

n2
3

p
LX
R

� �2

ð26Þ

Substituting Eq. (26) into Eq. (25a) yields,

LX
R

� �
1

"
� 9

8

LX
R

� �2
1

k4

#
¼ K ð27Þ

From this nonlinear moment–end rotation relationship the following maximum moment is obtained:

Kmax ¼
4
ffiffiffi
2

p

9
ffiffiffi
3

p k2 ð28aÞ

or

Mmax

M0

¼ 4
ffiffiffi
2

p

3
ffiffiffi
3

p
 ! ffiffiffiffiffiffiffiffiffiffiffiffi

DhEx

D11Eh

r
¼ 0:544

ffiffiffiffiffiffiffiffiffiffiffiffi
DhEx

D11Eh

r
ð28bÞ

where M0 ¼ 2pR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11Ehh

p
is the classical buckling critical moment, D11 is the bending rigidity of the shell in

the axial direction and Eh is the elastic modulus of the shell in the circumferential direction. The limit
instability moment given by Eq. (28b) is the well-known Brazier’s critical moment for long orthotropic
tubes (Li, 1996). For an isotropic shell this limit instability moment is only about 0.544 times the classical
buckling critical moment.

4. Determination of critical moment due to local buckling

The nonlinear bending response (moment versus end rotation) determined by Eqs. (24a) and (24b) has a
maximum value for the moment. This maximum moment defines the limit instability moment of finite
length shells with stiffening rings. For a member subjected to a compressive stress, however, bifurcation
instability may also occur. Many investigators have found that for shells of finite length subjected to pure

772 L.-y. Li, R. Kettle / International Journal of Solids and Structures 39 (2002) 765–781



bending the local bifurcation buckling almost always occurs before the limit moment is reached (Tatting
et al., 1995; Stephens et al., 1975). Indeed, as is shown in the Appendix A, even for isotropic shells of infinite
length this conclusion still holds.

The bifurcation buckling of circular cylindrical shells of intermediate length under bending can be de-
termined using the approach suggested by Seide and Weingarten (1961). For orthotropic shells, this critical
stress is expressed by (Tatting et al., 1997):

rcr ¼
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11Ehh

p

qh
ð29Þ

where q is the local radius of circumferential curvature of the cylinder at h ¼ 0. As it has been shown, ‘‘due
to the Brazier effect, the cross-section of the cylinder deforms into an oval and the radius of curvature at the
critical location increases, thus lowering the critical buckling stress’’ (Tatting et al., 1997). Therefore, the
collapse moment can be determined by examining when the axial stress on the compressive side of
the cylinder reaches this critical value. The maximum axially compressive stress can be calculated either by:

rx ¼ �Exexjh¼0 ¼ �Ex
du1
dx

�
þ du2

dx

�
ð30aÞ

or simply in terms of the stress formula of the beam in bending

rx ¼ � M
Ishell

ðRþ w2Þ ð30bÞ

where Ishell is the second moment of the cross-section of deformed shell defined by Eq. (13). The local radius
of circumferential curvature can be calculated by (derivation of Eq. (31) is given in Appendix B)

q ¼ R2

Rþ 3w2

ð31Þ

5. Numerical results

The nonlinear bending responses of shells without stiffeners are first investigated and the results are
shown in Fig. 2 for various values of k when l ¼ 1, in which the applied moment and end rotation have
been normalized with respect to their classical buckling values for an infinite length cylinder, and the
collapse parameter has been assumed to be equal to 1:

m ¼ M
2pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11Ehh

p ¼ K
R3

hL2

� � ffiffiffiffiffiffiffiffiffiffiffiffi
h3E2

x

D11Eh

s
ð32aÞ

�aa ¼ X
L
R

� �
R3

hL2

� � ffiffiffiffiffiffiffiffiffiffiffiffi
h3E2

x

D11Eh

s
ð32bÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
D11Eh

DhEx

r
¼ 1 ð32cÞ

It can be seen that, for very small values of the shell length parameter, k, which correspond to short and
very thin cylinders, there is almost no ovalization before buckling and thus the pre-buckling path remains
linear and buckling occurs at the classical value. As k increases, the effect of the Brazier nonlinearity be-
comes more important and the buckling critical moment tends closer to the Brazier’s limit moment.
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Fig. 3 shows the bending responses of shells for various values of l when k ¼ 1. Small values of the shear
length parameter, l, imply the boundaries having little influence on the ovalization deformation. Thus, the

Fig. 2. Applied moment (�mm) versus end rotation (�aa) for l ¼ 1:0 (diamond symbol represents the bifurcation buckling point).

Fig. 3. Applied moment (�mm) versus end rotation (�aa) for k ¼ 1:0 (diamond symbol represents the bifurcation buckling point).
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effect of the Brazier nonlinearity is important and the buckling critical moment, as to be expected, is close to
the Brazier’s limit moment. With the increase of the shear length parameter, the boundary influence be-
comes more important and thus the ovalization deformation becomes smaller. For very large value of l, the
pre-buckling path is almost linear and thus buckling critical moment is close to the classical value.

The curves of moment versus end rotation shown in Figs. 2 and 3 agree very well with those reported by
Tatting et al. (1997). The critical moments obtained here are also very close to those given by Tatting et al.
(1997) except for that with very large l value (i.e., for very short cylinders) in which case the present model
is not applicable.

Fig. 4 shows the variation of the critical end rotations with the shell length parameter k for two ratios of
R=h ¼ 10 and R=h ¼ 200, respectively. The results for those between these two ratios are not presented here
because they were found very similar and to lie between the two presented curves. It is of interest to find
that for k > 2 the ratio, R=h, does not have a significant influence on the solution. With the increase of k
both solutions gradually tend to the analytical solution of infinite length shells (its derivation is given in
Appendix A). The main deviation between the two solutions is found for short shells which is due to the
shear influence. For a given tube length parameter k, an increase in R=h implies an increase in the shear
length parameter l, and so a higher buckling critical moment is expected for a higher value of R=h.

The variation of the critical moments with the shell length parameter k for R=h ¼ 10 and R=h ¼ 200 is
shown in Fig. 5. As to be expected, the critical moment decreases with the increase of the shell length
parameter. The difference of the two curves is found mainly in the region for k < 2 where the shear de-
formation plays an important role. For long shells, the two curves merge together and tend to the analytical
solution of infinite length shells as k ! 1. In order to demonstrate the reliability of the model established
in this study the critical moments obtained from other methods are also given in Fig. 5. It is found that our
results agree very well with those given by Libai and Bert (1994) and Tatting et al. (1997). Note that the
results in Libai and Bert (1994) were obtained by ignoring the shear warping. Thus, they are only com-
parable with those related to small values of the shear length parameter (R=h ¼ 10).

Fig. 4. Critical end rotation (�aa) versus shell length parameter (k).
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It should be mentioned that the difference between the present model and that developed by Tatting et al.
(1997) is the axial displacement assumed and the method used to solve the governing differential equations.
Although the axial displacement employed in the present model has one less term than that used in the
Tatting’s model and some simplification is used in solving the nonlinear equations, the results obtained are
very close to those provided by Tatting et al. (1997). This demonstrates that the assumptions made in the
present model are reasonably acceptable.

The influence of the stiffening rings on the critical moment and the corresponding end rotation is shown
in Fig. 6. It can be seen that the use of stiffeners can significantly increase the critical moment for long shells
where the ovalization of the shell cross-section has a significant influence on the local buckling of the shell.
For very short shells, the stiffeners have very little influence on the critical moment. This is because the
ovalization is very small for short shells and so there is no remarkable difference between smooth and
stiffened shells.

Fig. 7 shows the variation of critical moments and the corresponding end rotations with the stiffener
rigidity parameter for k ¼ 2 and k ¼ 10, respectively. As expected, in both cases the critical moment and
corresponding end rotation increase with the stiffener rigidity. However, the increase of critical moment and
corresponding end rotation seems to be limited in the case of k ¼ 10 when the number of stiffeners is fixed.
This is because as b ! 1, the bending of a long stiffened shell becomes the same as that of a number of
short shells, the length of which is equal to the space between the individual stiffeners.

Fig. 8 shows the influence of the number of stiffeners on the critical moment and corresponding end
rotation. Note that as the number of stiffeners is increased, the rigidity of each stiffener is reduced since the
bending rigidity parameter b is identical in each case. It is found that, both the critical moment and cor-
responding end rotation increase initially with the number of stiffeners. With the further increase, the space
between the individual stiffeners is reduced so that a smear stiffener model can be applied. Therefore
the stiffener number has no influence on the buckling behaviour of the shell after it reaches to a certain
level.

Fig. 5. Critical moment (�mm) versus shell length parameter (k).

776 L.-y. Li, R. Kettle / International Journal of Solids and Structures 39 (2002) 765–781



Fig. 6. Critical moment (�mm) and end rotation (�aa) versus shell length parameter (k) for smooth ðb ¼ 0Þ and stiffened shells ðb ¼ 1Þ
(R=h ¼ 200, N ¼ 10).

Fig. 7. Critical moment (�mm) and end rotation (�aa) versus the stiffener rigidity parameter (b) for stiffened shells with different values of k
(R=h ¼ 200, N ¼ 10).
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6. Conclusions

The nonlinear bending responses of finite length shells with and without stiffening rings subjected to pure
bending have been investigated. The problem has been solved by modifying the Brazier approach and
employing the semi-membrane constitutive theory. The nonlinear bending response is determined in a way
in which solving nonlinear equations can be avoided. The stability of the shell due to local buckling has
been determined by using Seide–Weingarten approximation. The influence of Brazier nonlinearity on the
critical moment has been discussed. Results have been compared with those obtained from other methods,
which demonstrates that the assumptions used in the present study are suitable.

It has been shown that the critical moment increases with both the number and rigidity of stiffeners. This
increase is because the stiffeners can resist the ovalization deformation and thus enhance the overall
bending rigidity of the shell.

Finally, it should be mentioned that the buckling investigated in the present study is restricted to the case
where the ovalization deformation is dominant and thus the results obtained from this study is applicable
only to intermediate and long cylindrical shells with light stiffening rings. For shells with heavy stiffening
rings the present results may be applied when the stiffener spacing is long enough in which case the ov-
alization deformation is still dominant.

Appendix A. Derivation of critical moment for infinite length isotropic tubes

In terms of Brazier simple approach, the moment versus end rotation relationship for an infinite length
tube under pure bending can be expressed as follows (Li, 1996):

M
Mb

¼ 3

2
1

�
� 3

2
n

�
C
Cb

� �
ðA:1Þ

Fig. 8. Critical moment (�mm) and end rotation (�aa) versus the stiffener number (N ) for the stiffened shell (k ¼ 10, R=h ¼ 200, b ¼ 2).
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n ¼ 2

9

C
Cb

� �2

ðA:2Þ

where M is the applied moment, C is the longitudinal bending curvature of the tube axis, and n is the
dimensionless parameter characterizing the maximum flattening in bending at the extreme fibers (see Fig.
9(A)). Mb and Cb are the Brazier’s limit moment and corresponding bending curvature defined by:

Mb ¼
2
ffiffiffi
2

p

3
ffiffiffi
3

p M0 and Cb ¼
ffiffiffi
2

p
ffiffiffi
3

p C0 ðA:3Þ

M0 ¼
pRh2Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p ¼ the classical critical moment ðA:4Þ

C0 ¼
h

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p ¼ the classical critical curvature ðA:5Þ

The largest compressive stress of the tube during pure bending can be calculated by:

r ¼ MR
Ishell

ð1� nÞ ðA:6Þ

where Ishell is the second moment of the cross-section of the tube, which, considering the ovalization de-
formation, has the following approximate expression (see Eq. (13)):

I ¼ pR3h 1
�

� 3
2
n
�

ðA:7Þ

Fig. 9. (A) The deformed geometry of the shell cross-section. (B) The deformed cross-section.
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Substituting Eq. (A.7) into Eq. (A.6) yields,

r ¼ M
pR2h

1� n
1� 3

2
n

ðA:8Þ

The largest radius of circumferential curvature of deformed tube is at the point where the compressive stress
is also the largest, and can be expressed by (see Eq. (31) and w2 ¼ �nR)

q ¼ R
1� 3n

ðA:9Þ

According to Seide and Weingarten (1961) approximation, for the pure bending of a long tube a local
buckling occurs when the product of the stress and the curvature radius satisfies the following condition
(see Eq. (29)):

rcrqcr ¼
Ehffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� m2Þ
p ðA:10Þ

Substituting Eqs. (A.8) and (A.9) into Eq. (A.10) yields,

Mcr

M0

¼
1� 3

2
ncr

� �
ð1� 3ncrÞ

ð1� ncrÞ
ðA:11Þ

Since the buckling point is one of the points on the moment versus curvature curve Mcr, Ccr and ncr can be
solved from Eqs. (A.1), (A.2) and Eq. (A.11). Substituting Eqs. (A.2) and (A.11) into Eq. (A.1) yields,ffiffiffiffiffiffiffiffi

3ncr

p
ð1� ncrÞ ¼ 1� 3ncr ðA:12Þ

from which, we obtain,

ncr ¼ 0:1453 ðA:13Þ
Eq. (A.13) is substituted into Eqs. (A.1) and (A.2), yielding

Ccr ¼ 0:8085Cb ¼ 0:6601C0 ðA:14Þ

Mcr ¼ 0:9485Mb ¼ 0:5163M0 ðA:15Þ
This indicates that the critical moment associated with local buckling is about 5% lower than the limit
moment given by Brazier. Thus, the local buckling occurs before the limit point is reached.

Appendix B. Derivation of (Eq. 31)

The local radius of circumferential curvature is obtained by calculating the second-order derivative of
the deformed cross-section (see Fig. 9(B)) as follows:

q ¼ � d2z
dy2

� ��1
					
h¼0

ðB:1Þ

where z and y are the horizontal and vertical coordinates which are defined by

y ¼ ðRþ w2 cos 2hÞ sin h � w2

2
sin 2h

� �
cos h ðB:2Þ

z ¼ ðRþ w2 cos 2hÞ cos h þ w2

2
sin 2h

� �
sin h ðB:3Þ
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Substituting Eqs. (B.2) and (B.3) into Eq. (B.1), we have,

q ¼ R2

Rþ 3w2

: ðB:4Þ
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